Copernicus' "Commentariolus': Mad Lib Edition

1. Adjective
2. Noun
3. Adjective
4. Adverb
5. Verb - Present Tense
6. Verb
7. Adjective
8. Adjective-Comparative
9. Noun - Plural
10. Noun
11. Noun - Plural
12. Noun - Plural
13. Preposition Or Subordinating Conjunction
14. Noun - Plural
15. Noun
16. Noun
17. Noun - Plural
18. Verb - Past Participle
19. Adjective
20. Adjective
21. Adjective - Comparative
22. Noun - Plural

Copernicus' 'Commentariolus': Mad Lib Edition

Our ancestors assumed, I observe, a \qquad number of celestial spheres for this reason especially, to explain the apparent motion of the planets by the principle of \qquad . For they thought it altogether
\qquad that a heavenly body, which is a perfect sphere, should not always move \qquad . They saw that by connecting and \qquad regular motions in various ways they could make any body appear to move to any position.

Callippus and Eudoxus, who \qquad to solve the problem by the use of concentric spheres, were unable to account for all the planetary movements; they had to explain not merely the \qquad revolutions of the planets but also the fact that these bodies appear to us sometimes to mount \qquad in the
\qquad , sometimes to descend; and this fact is incompatible with the \qquad of concentricity
. Therefore it seemed better to employ \qquad and epicycles, a system which most \qquad
\qquad finally accepted.

Yet the planetary theories of Ptolemy and most other \qquad , although consistent
with the numerical data, seemed likewise to present no small difficulty. For these theories were not adequate unless certain \qquad were also conceived; it then appeared that a planet moved with uniform
\qquad neither on its deferent nor about the center of its epicycle. Hence a system of this sort seemed neither sufficiently absolute nor sufficiently pleasing to the \qquad .

Having become aware of these defects, I often considered whether there could perhaps be found a more reasonable \qquad of circles, from which every apparent inequality would be derived and in which everything would move uniformly about its proper center, as the rule of absolute motion requires. After I had
\qquad myself to this very \qquad and almost \qquad problem, the suggestion at length came to me how it could be solved with \qquad and much simpler constructions than were formerly used, if some assumptions (which are called \qquad) were granted me. They follow in this order.
-Nicolaus Copernicus

